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ABSTRACT 

Semiconductor manufacturing fab is one of the most sophisticated man-made system, consisting of 

hundreds of very expensive equipment connected by highly automated material handling system. Operation 
schedule has huge impact on the productivity of the fab. Obtaining efficient schedule for numerous 
equipment is a very complex problem, which cannot be solved by conventional optimization techniques. 
Hence, heuristic dispatching rules combined with fab simulation is often used for generating fab operation 
schedule. In this paper, we formulate the fab scheduling problem as a semi-Markov decision process and 
propose a reinforcement learning method used in conjunction with the fab simulator to obtain the 

(near-)optimal dispatching policy. Resulting schedule obtained by the proposed method shows better 
performance than heuristic rules whose parameters are tuned by human experts.  

1 INTRODUCTION 

To improve performances of fabs in various aspects, many dispatching rules such as FIFO (First In First 
Out), SPT (Shortest Processing Time) or EDD (Earliest Due Date) have been studied. It is known that a 
single dispatching rule improves a particular performance of fabs (Haupt 1989; Ð urasević and Jakobović 

2018), however, it is nearly impossible to improve multiple performances at the same time by applying a 
single dispatching rule. Therefore, in the real fab, operators use the weighted sum of multiple scores derived 
from well-known dispatching rules or their scheduling experience. (Li et al. 2012; Li et al. 2013) introduced 
adaptive dispatching rules that can be calculated in certain amount of numeric values. The operators select 
a job that has the highest score when a dispatching event occurs. Even though the schedule is sensitive to 
the weights of the dispatching scores (Lee et al. 2018), it is still adjusted by human intuition.  

There are studies on scheduling problem in manufacturing systems using Reinforcement Learning (RL). 
(Ramirez-Hernandez and Fernandez 2007; Ramirez-Hernandez and Fernandez 2009; Chen et al. 2010). The 
study of Ramirez-Hernandez and Fernandez (2007) introduces a basic formulation of the re-entrant line 
control problem, and a RL approach using a simple approximation. And they applied the method to the 
Intel Mini-Fab benchmark model (Ramirez-Hernandez and Fernandez 2009). In the literature, the fab state 
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is represented by buffer level and the occurrence of failure or PM on equipment. They introduce a learning 
algorithm that is capable of finding an optimal policy among 5 dispatching rules when the state feature is 
given, while focusing on minimization of WIP and cycle time. Chen et al. (2010) build a fixed-sized state-

action pair table. The table contains 10 states, which are classified by WIP ratios, and actions, which are 
represented by predefined weight sets of dispatching rules. In addition, each element, that is an action-value 
function, in the table is estimated to find the optimal dispatching policy. Similarly, Shahrabi et al. (2017) 
applied RL approaches to the job shop scheduling problem with a 20 x 8  sized state-action pair table. 

Ramírez -Hernandez and Fernandez (2009) focused on which dispatching rule to select. Chen et al. 
(2010) and Shahrabi et al. (2017) focused on which weight set to select. In this research, we focus on which 

job to select. This research introduces a RL approach that satisfies various purposes of a virtual fab, which 
contains re-entrant lines while retaining the idea of real fab operators. The state features defined in this 
research are capable of describing fab states regardless of the size of a fab. In addition, the direction of 
learning can meet the objectives of fab with intuitive settings for reward or penalty values. 

2 PROBLEM DISCRIPTION 

2.1 Re-Entrant Line Model 

In the real fab, there are hundreds of machines and each of which takes charge of different processes, and 
the products have to undergo hundreds of process steps before completed. As shown in the existing studies 
(Ramirez-Hernandez and Fernandez 2007; Ramirez-Hernandez and Fernandez 2009), a fab can be 
represented as a re-entrant line model (Kumar 1993). During the production, the products have to visit 
hundreds of process steps and there are many cases in which products have to visit the same process steps 
several times. (i.e. the products are re-routed to some of the steps that have been visited.) 

Figure 1: The fundamental unit of the fab line. 

 Figure 1 shows the fundamental unit of the fab line. A set of machines that execute the same process is 
called a station. Each station includes multiple machines and has buffers. A job arriving at the buffer waits 
until the suitable machines select it according to their dispatching logic. A relationship that indicates 
whether a job can be processed by a machine is called a job arrangement. Job arrangements vary on job 

types so that some of the jobs can be arranged to all machines in the station and some of them can be 
arranged to only one machine. If a machine loads a job has a different type from the last loaded job, a setup 
change occurs and takes some time for a tool change. A fab is a set of the fundamental units with complex 
connections based on process route of products as shown in Figure 2. 
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Figure 2 : General diagram for a re-entrant line fab 

2.2 Dispatching Scores 

As mentioned in the introduction, fab schedules are built by selecting the job that has the highest weight 
sum of scored dispatching rules. There are diverse dispatching scores by their purposes. Besides, some of 

well-known dispatching rules are transformed into scores and are used in fabs, and some of the fab operators 
create and use scores based on their needs and with concerns on their fab situations. The scores are including 
comprehensive information on the fab situation at the point of dispatching, and thus have high feature 
resolution in expression of a fab. This property is useful when applying RL and details will be described in 
Section 3.3 

Table 1: Dispatching score examples. 

Dispatching score Description Relate KPI 

FIFO  
Assign a large value to a job that 

arrives earlier than others. 
 

SPT/LPT 
Assign a large value to a job that 
has shorter/longer processing time 
than others. 

 

Setup  
Assign 0 if a job causes a setup 
change, otherwise 1. 

Number of Setups 

Required Eqp 
Assign ratio of machines that have 
tool setting for a job to the entire 
machine in the current station. 

Number of Setups 

Queue Time 
Assign a large value to a job close 
to the pre-defined queue time limit. 
If a job exceeds the limit, assign 0. 

Queue Time Violation 

Target Date 

Assign a large value to a job close 

to the pre-defined due date. If a job 
exceeds the due date, assign 1. 

Due Date Violation 

Layer Change 
Assign 0 if a job causes layer 
change, otherwise 1. 

Number of  
Layer Changes 
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3 REINFORCEMENT LEARNING APPROACH 

3.1 Markov Decision Process and Reinforcement Learning 

The first step in the application of the RL is defining the problem to solve in the form of a Markov Decision 

Process (MDP). A MDP is specified by the collection of objects < 𝑇, 𝑆, 𝐴, 𝑃(∙ |𝑠, 𝑎), 𝑅(𝑠, 𝑎) > where 𝑇 is 
a discrete time horizon, 𝑆 is a state space, 𝐴 is an action space, 𝑃(∙ |𝑠, 𝑎) are the state transition probabilities 
and 𝑅(𝑠, 𝑎) is a reward function. Since fabs are complex systems consisting of various machines, jobs, 
processes, it is difficult to know state transition probabilities 𝑃(∙ |𝑠, 𝑎) exactly. However, there exist some 
probability distributions which represent the system dynamics and if it is  assumed that the system satisfies 
the Markov property in Equation (1), then it can be said that there is enough information needed in the 

application of the RL. 
 

 𝑃(𝑠𝑡+1 = 𝑠′|𝑠𝑡, 𝑎𝑡) = 𝑃(𝑠𝑡+1 = 𝑠′|𝑠𝑡, 𝑎𝑡 , 𝑠𝑡−1, 𝑎𝑡−1,𝑠𝑡−2, 𝑎𝑡−2,𝑠𝑡−3, 𝑎𝑡−3,⋯ , 𝑠0, 𝑎0) (1) 

 
 RL is a set of algorithms can handle MDP based control problem under large state, action spaces and 
uncertain state transition probabilities. Most of RL algorithms are based on the estimation of the value 

functions. The definition of value function is as follows: 
 

 𝑉𝜋(𝑠) = 𝐸𝜋[𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 ⋯|𝑠𝑡 = 𝑠] = 𝐸𝜋[𝑟𝑡+1 + 𝛾𝑉𝜋(𝑠𝑡+1)|𝑠𝑡 = 𝑠],  
 

 𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑟𝑡+1 + 𝛾𝑉𝜋(𝑠𝑡+1)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎].  
  
 The value functions are functions of states or state-action pair which represent the expectation of the 

sum of discounted future rewards under 𝜋 which is the policy of decision makers. By estimating a value 
function under policy 𝜋, we can get better policy 𝜋′ according to following equation: 

 

 𝜋′(𝑠) = argmax
𝑎

𝑄𝜋(𝑠, 𝑎).  

 
Temporal Difference (TD) learning is one of the most popular algorithms for estimating the value 

function. TD Learning has the advantage of being able to learn while an episode is running. According to 
the definition of the value function, TD learning is a method of minimizing the TD error in Equation (2). 

 

 𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡), (2) 

 

 𝑉(𝑠𝑡) ← 𝑉(𝑠𝑡) + 𝛼𝛿𝑡. (3) 
 

Since fab simulation takes a long time to run one episode, TD learning is an attractive method which 
enables to learn during the simulation. There are popular methods based on TD learning such as SARSA 
and Q-learning. In this paper, SARSA(λ)  learning is used. For more information, see Reinforcement 
Learning : An Introduction (Sutton 2018) 

3.2 Reinforcement Learning for Semi-Markov Decision Process 

Classical MDP formulation assumes that the time horizon T is discrete. But, in the actual fab, schedules are 

made by a sequence of decisions on the continuous time horizon. Since the time interval between decision 
makings is not constant, RL algorithms introduced in Section 3.1 cannot be applied directly. This case can 
be seen as Semi-MDP and related studies were done by Bradtke and duff (1995). The study introduced a 
way to apply the RL to Semi-MDP. According to their research, the discount factor 𝛾 and reward terms 
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𝑟𝑡+1 used for the MDP are changed to form of depending on the time interval 𝜏 between decision making. 
These changes make semi-MDP solution reach to the optimal policy as classical MDP does. 

 

 𝑟𝑡+1 → ∫ 𝑒−𝛽𝑘𝑟𝑡+𝑘𝑑𝑘
𝜏

0
, (4) 

 

 𝛾 →  𝑒−𝛽𝜏. (5) 
 

TD error in Equation (2) is for MDP. Therefore, according to Equation (4), (5), Equation (2) can be re-
written as follows: 

 

 𝛿𝑡 = ∫ 𝑒−𝛽𝑘𝑟𝑡+𝑘𝑑𝑘
𝜏

0
+ 𝑒−𝛽𝜏𝑉(𝑠𝑡+𝜏) − 𝑉(𝑠𝑡)  

3.3 Function approximation and State Feature Selection for Fab 

The manufacturing system has a large state space and action space. The state space contains information 
about entire buffers and machines as shown in following equations:   

 

 𝑠 = [�⃗� , �⃗⃗� ]  
  

 �⃗� = [�⃗� 1, �⃗� 2, … , �⃗� 𝑛]   �⃗� 𝑖 = [𝐽 1, 𝐽 2, … , 𝐽 𝑐𝑖
]    𝐽 𝑗 = [𝐴𝑟𝑟𝑗, 𝐷𝑢𝑒𝑗, 𝑃𝑟𝑜𝑐𝑗 ,𝑊𝑎𝑖𝑡𝑗, 𝑇𝑜𝑜𝑙𝑗, … ]    

  

 �⃗⃗� = [�⃗⃗� 1, �⃗⃗� 2, … , �⃗⃗� 𝑚]    �⃗⃗� 𝑘 = [𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝐽𝑜𝑏𝑠𝑘, 𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑘, 𝐿𝑎𝑠𝑡𝐽𝑜𝑏𝑇𝑦𝑝𝑒𝑘 , 𝐿𝑎𝑠𝑡𝑇𝑜𝑜𝑙𝑇𝑦𝑝𝑒𝑘 , … ]   

 

�⃗�  is the state vector of all buffers and 𝑛 is the total number of buffers. Each vector �⃗� 𝑖  consists of job 
property vectors 𝐽 𝑗 where 𝑐𝑖 is a maximum capacity of buffer 𝑖. A vector  𝐽 𝑗 has job information such as 
arrival time, due date, process time, waiting time in a buffer, tool type and so on. �⃗⃗�  is the state vector of 
all machines and 𝑚 is the total number of machines. �⃗⃗� 𝑘 holds information about the jobs that are currently 
waiting in buffers and current or last loaded job of machine 𝑘. 
 To estimate the value function of such large systems, parameterized function approximation is 

considered. The value function can be represented as a general, linear, non-linear function or neural net 
structure with appropriate state features depending on parameter vector 𝜃 .  

 

 𝑉(𝑠) = 𝜃 𝑇�⃗� (𝑠) 𝑜𝑟 𝑔(�⃗� (𝑠), 𝜃 ) (6) 
  
 Using function approximation, the value function update in Equation (3) is changed to the update form 
in the parameter space as show in Equation (7). Since large scale approximate dynamic programming (i.e 

reinforcement learning) assumes that the state transition probability of target system is unknown, various 
Stochastic Gradient Methods (SGD) such as Adam and RMSProp are useful for sample backup.  
 

 𝜃 ← 𝜃 + 𝛼𝛿𝛻
�⃗⃗� 
𝑉(𝑠) (7) 

 
 While approximation of the value function eliminates the concern on large state space, it leaves the 

problem of setting the state features well. According to Taylor (2011), good state features are able to capture 
the reward structure of the target system and predict next state features well. Furthermore, since the state 
features are subsets of the entire state space, the state features should contain lots of information about the 
target system. For example, rather than expressing the entire fab as a number of workpieces,  it is better to 
express an entire fab in terms of the number of workpieces and their waiting time, processing time, and the 
number of product types. And in the case of reward, when the objective is to minimize the setup count, it 
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is better to give the information whether the workpiece will cause the setup or not rather than how late the 
workpiece is. To satisfy these conditions, we have considered dispatching scores introduced in Section 2.2 
and Li et al. (2012; 2013) as state features:  

 

 �⃗� (𝑠) =  

[
 
 
 
 
 
 
 
 �⃗�

 1(𝑠)

�⃗� 2(𝑠)

�⃗� 3(𝑠)

�⃗� 4(𝑠)

�⃗� 5(𝑠)
⋮

�⃗� 𝑁(𝑠)]
 
 
 
 
 
 
 
 

        �⃗� 𝑖(𝑠) =

[
 
 
 
 
 
 
 
𝐹𝑖,1(𝑠)

𝐹𝑖,2(𝑠)

𝐹𝑖,3(𝑠)

𝐹𝑖,4(𝑠)

𝐹𝑖,5(𝑠)
⋮

𝐹𝑖,𝑀𝑖(𝑠)]
 
 
 
 
 
 
 

 (8) 

  

Dispatching scores made by the fab operator for decision making can adequately represent the state of the 
fab and react exactly to the reward structure to achieve. In Equation (8), �⃗� 𝑖(𝑠)  denotes a vector of 
dispatching scores 𝐹𝑖,𝑗(𝑠) of the last selected job in the machine 𝑖, 𝑀𝑖 is the number of dispatching scores 
related to the machine 𝑖  and �⃗� (𝑠)  is a vector of �⃗� 𝑖(𝑠)  for all machines. Since the state transition 
probabilities of the system are unknown, the next state 𝑠′ is also unknown. But, with this state feature vector, 
the state feature vector right after decision making is definitely known because we know that the dispatching 

score vector �⃗� 𝑖(𝑠).  
 

 �⃗� (𝑠′) = �⃗� (𝑠𝑝) = �⃗� (𝑆𝐴(𝑠, 𝑎)) (9) 
 
In Equation (9), the 𝑠′ is the next state and 𝑠𝑝 is the state after decision making at the current state 𝑠. 𝑠′ and 
𝑠𝑝 may not be equal, but their state feature vectors are equal. This technique is based on the post-decision 
state variable introduced in Approximate Dynamic Programming: Solving the curses of dimensionality 

(Powell 2007) 
 And also this approach retains the concept of weight sum method of the real fab operators. If assumed 
that the function for approximation is linear, the way to select is exactly the same as the operator’s method. 
But the meaning of weights used for decision making changes into terms of expectation of discounted 
reward sum and the weights are automatically adjusted by RL algorithm under a suitable reward structure, 
not human. In the next section, we will discuss a suitable reward structure for fabs 

3.4 Reward Structure for Fabs 

Fab schedules are evaluated in various ways such as production amount, machine utilization, due date 
violation, setup count, etc. In order to set rewards that satisfy various purposes at the same time, it is 
preferable to have no strong correlation between KPIs that are to be achieved. If the reward set for 
improving the KPI is greatly overlapped, the variance in the learning steps may be adversely affected, 
resulting in a wrong direction or slow learning. For example, it is not good to set up rewards related to the 

increase in production and in the utilization of machines at the same time. That is because the higher the 
utilization of machines, the higher the production volume, and the higher utilization of machines, the higher 
the production volume. 
 And also it is better to use intuitive reward structure, rather than abstracted one. In the previous 
researches, WIP level and Cycle time of the jobs were KPIs. Minimizing the WIP level improves the overall 
performance of the fab, but it does not lead to a specific performance improvement designed by the fab 

operator. Achieving improvement of desired performances is important because the fab policies can vary 
depending on demand and market conditions. By tuning the reward structure, a proper schedule for rapidly 
changing market conditions can be obtained through the proposed RL method. 
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3.5 TD Learning Algorithm for Semi MDP Formulated Fab Dispatching Problem 

First, it needs to initialize parameters to be used for learning and start the fab simulation. Then, add the 
appropriate reward to the list R of the reward at the event time to generate the reward. At the point of 

dispatching event during simulation, obtain 𝜏 from the time of previous dispatch event and calculate the 
reward and discount rate based on 𝜏. Calculated the scored dispatch priorities for all selectable jobs in the 
𝐴(𝑠) and get V which is the set of all value function of post-decision state. Select the job from V  through 
the suitable selection method to be used for learning. After selection, obtain 𝑉 and 𝑉′ from the  �⃗�  and  �⃗� ′ 
calculated in the previous dispatching event, and use them with 𝑟 and 𝛾 to find the TD error 𝛿. If 𝜆 is not 
zero, eligibility trace vector 𝑒  also need to be updated. Since the function approximation TD learning based 

on the sample gradient, update the 𝜃   using the appropriate SGD method. Finally, replace the state feature 
vector �⃗�  to �⃗� ′ and clear the reward list R. Repeat the learning procedure until the end of the simulation. In 
the next section, the experimental results obtained from the virtual fab is shown.  

Algorithm 1: SARSA(𝜆) Algorithm for fab scheduling. 

Initialize : 𝜃  arbitrarily, �⃗�  appropriately, and 𝑒 =0⃗  

 
Repeat(Until simulation ends) 

Repeat(for each reward event) 
R  ← set of rewards 

Repeat(for each dispatching event) 
𝑠 ← current state of simulation 

𝜏 ← the time interval between previous and current dispatching event 
𝛾 ← 𝑒−𝛽𝜏 
𝑟 ← sum of all discounted rewards in R 
 
For all i ∈ 𝐴(𝑠) 

V ← 𝑉(𝑆𝐴(𝑠, 𝑖))  
𝑎 ←Select i from V by using suitable selection method 

�⃗� ′ ← �⃗� (𝑆𝐴(𝑠, 𝑎)) 

𝑉 ← 𝑔(𝜃 , �⃗� ) 

𝑉′ ← 𝑔(𝜃 , �⃗� ′) 

𝑒 ← 𝛾𝜆𝑒 + ∇
�⃗⃗� 
𝑉 

𝛿 ← 𝑟 +  𝛾𝑉′ − 𝑉 
𝜃 ← Update with 𝛿 and 𝑒  by using suitable SGD method 
�⃗� ← �⃗� ′ 
Clear R 

End 

4 EXPERIMENTS 

4.1 Experimental Environment 

The virtual fab to be used in the experiment is a fab similar to the LCD fab that is currently running. The 
fab has a total number of 160 machines and consists of numerous Clean, Photo lithography, CVD units and 

others. Each of machines has averagely 5 types of dispatching scores for decision making and the total 
number of dispatching scores in the entire fab is 682. The fab produces 50 kinds of products, and the demand 
for the products is consisted of 6 types and 250 jobs per day on average. It is assumed that the product 
arrives at the fab is not random and follows a predefined demand scenarios. The number of processes that 
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needed in the production varies from product to product, averagely 140 processes per product are required 
to be visited until leaving the fab as a finished product. We used the MozArt (Ko et al. 2013) which is a fab 
simulation engine, developed by VMS Solutions Co., Ltd to simulate the virtual fab.  

 The selection method used for learning is ε-greedy. With the probability (1-ε), the highest scored task 
is selected, otherwise, it is selected randomly. The SGD method used to update the parameter is Adam 
(Kingma and Ba 2014)  which is widely used in academia recently. This method minimizes the adverse 
effects of learning from different scales of features and is a momentum-based method which enables quick 
searches for local solutions.  
 We focused on three objectives: increase production volume, preventing due date violation, and 

reducing the setup count of photo machines which becomes bottle neck process steps, to improve virtual 
fab. The reason behind setting such objectives is because they are intuitive and most widely used KPIs in 
the real LCD fabs. And also the intuitive reward is better than the abstracted reward  for improvement of 
specific KPIs. To achieve the objectives, a reward for the finished product is set to 1000 per product, -100 
per late product per day and -500 per photo machine setup change. The numerical values are arbitrarily set 
by the experimenter and will be discussed in detail in Section 5.  

4.2 Experiment 1 

Figure 3 : KPIs at every 10000 iteration. 

The goal of this experiment is to see whether a schedule obtained from RL is performing better than a 
schedule at the start of learning. A schedule with high cumulative reward value is better than a schedule 
with low cumulative reward value under the same reward structure. So, if RL works, cumulative reward 
will increase as learning progresses. For the experiment, the initial parameter vector 𝜃  was all given equal 

to -1, and the approximation of the value function is simply linear in Equation (6). Of course, the function 
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structure for approximation can be replaced to Neural net or other general functions, and it can be 
considered as a future research work. The following is the result of learning the virtual fab with a fixed 14-
days demand scenario (i,e. a job arrives at a fixed time as the real fab does) 

 In the simulation with the given scenario, about 68000 learning iteration steps occur. When the scenario 
ends, run the same scenario again using 𝜃  obtained from the previous scenario. The graphs show the 
experiment results of simulation for 14 days with 𝜃  obtained from every 104 learning iteration steps. This 
is because of the use of ε-greedy for learning and the use of greedy for evaluation. From the experiment 
result (a), it can be clearly seen that the cumulative reward value increases as the iteration proceeds. The 
graphs (b),(c) and (d) show the improvement of each KPI. As learning progresses, the total amount of 

production increase, the total number of setup changes in photo machines decrease and the total amount of 
due date violations decrease. 

Table 2: Experiment summary of KPIs. 

 Human Initial Avg RL Best RL 

Cumulative 
Reward 

2891970 -2515706 3044316 3072052 

Total 
Production 

3292 2339 3342 3351 

Photo Setup 
Change 

740 9299 535 497 

Due Date 
Violation 

324.42 2052.06 304.29 304.47 

 
Table 1 shows the overall KPIs from the experiment. The Column named “Human” is the result of the 

best schedule created by the VMS Solutions Co., Ltd engineer, "Initial" is the result at the start of the 
learning, "Avg RL" is the average of the results after half-million iterations of the learning, and "Best RL" 
is the best result during entire iterations. The average cumulative reward of RL is significantly higher than 
the cumulative reward of the initial schedule and also higher than the human-tuned schedule. It means that 

the schedule created by RL is on average better than the schedule created by human. In addition to 
cumulative reward, other indicators also improved.   

4.3 Experiment 2 

In Section 4.2, we showed that RL can improve desired KPIs under a purposeful reward structure. But, the 
portion of rewards is arbitrarily adjected by users. Therefore, it is necessary to check how the schedules are  
affected by the change of rewards structure. In this experiment, except for the due date violation penalty, 

the other settings were the same as the previous experiment. To see how the learning direction has changed, 
we set the due date violation penalty to -1000 which was -100 in the previous experiment.  

Table 3: Average performance of experiment 1 and 2. 

 Experiment 1 Experiment 2 

Total 
 Production 

3344.34 3342.33 

Photo Setup 
 Change 

535.19 551.31 

Due Date 
Violation 

304.29 287.79 
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Each column shows the average performance of the two experiments. Since the amount of the penalty 
increased, the amount of due date violation decreased. But, the numbers of photo setup change are increased. 
It seems that the photo units intentionally cause setup changes to avoid huge due date violation penalty. As 

we intended, this result exactly shows that the changes in the reward structure affect performance. The 
direction of learning can be controlled by adjusting the ratio of each reward with trade-offs. Still, there is a 
part that human has to participate, it is not necessarily disadvantaged. 

4.4 Experiment 3 

In the previous sections, the experiments were conducted under a given fixed-demand scenario. In this 
section, we check how the policies from RL are robust in changes of fab situation and demand scenario. 

Total of four different scenarios are prepared for this experiment. Some of them are similar to the previous 
scenario and some of are totally different from the previous one. The demand set 1(D1) is the demand set 
used in  Experiment 1 and 2. D2 is a demand set which is obtained from 1-day simulation of D1. In the same 
way, D3 is obtained from 2-day simulation of D1. D4 is randomly generated scenario with 80% arrival level 
of D1. The following table shows the cumulative rewards of the four demand scenarios under the policy 
obtained through reinforcement learning in the D1 & D2 and the policy created by the engineer. 

Table 4: Comparison of the policies from different learning scenario. 

 Human Best RL D1 Best RL D2 

Experiment 

D1 
2891970.94 

3072052.30 
(+6.22%) 

3033323.961 
(+4.89%) 

Experiment 

D2 
2809619.48 

2927850.64 
(+4.20%) 

2956354.36 
(+5.22%) 

Experiment 

D3 
2649341.72 

2749867.80 
(+3.79%) 

2750446.54 
(+3.82%) 

Experiment 

D4 
2456494.88 

2501844.53 
(+1.84%) 

2441535.67  
(-0.06%) 

 
The parentheses in Table 4 show the increase/decrease amount of cumulative reward compare to human 

policy. Except one result comes from the “Experiment D4” with best RL policy trained through D2, the 
others are all positive. It means that policies obtained through RL are better than human policy in most of 
the given scenario. Another interesting observation is that each of RL policy has relatively high 
performance gap in its learning scenario, which means that RL ensures a good schedule in a learning 

scenario, but not in others. It is critical issue that reinforcement learning gives better schedules than human 
adjusted schedules, but only in scenarios similar to those used at the time of learning. In other words, the 
proposed method is not robust to various scenarios. This is one of the limitations in this research. Details 
will be discussed in Section 5.  

5 LIMITATIONS 

We suggested a RL approach to learning the fab scheduling. However, there are still some limitations. First, 

the features that we suggested have been designed to process a given demand well, however, when there 
are changes in the demand, a good schedule is not always guaranteed. As in the experiment results in Section 
4.4, when there are similarities between the demands, the results also show similar tendencies in 
improvement, But when the demands are changed, there is possibility of bad schedules. This is because the 
ranges of state features vary on scenarios and there are no features that can capture changes in demand. If 
an arbitrary state feature element 𝐹𝑖,𝑗(𝑠) in scenario D1 experiences only in range (0.4,0.6) and the same 
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feature in scenario D1 experiences only in range (0.1,0.3), then the directions of learning are different. And 
also the parameters from the two scenarios function differently. 
 The second limit is, as mentioned in Section 4.3, that there are still some parts where human 

engagement is needed. Even if the parameters for decision making is automatically tuned through RL 
algorithm, the reward structure should be set by the human to improve desired objectives. The effort to set 
proper rewards may be painful.  

6 CONCLUSION 

In this paper, a fab scheduling problem is formulated into a semi-MDP and the RL approach with the state 
feature construction based on weight sum concept is proposed. The results for the virtual LCD fab show 

that the multiple performance indicators can be improved through RL at the same time. As explained in the 
limitations, rewards still need to be adjusted. However, the value of this research is that it has reduced the 
number of weights that need to be adjusted. Although the rewards still need to be set manually, through this 
research, the problem of setting hundreds of dispatching scores is transformed into a problem which 
requires setting a small number of rewards. The manual setting of the rewards is not necessarily a 
disadvantage since the priorities can be changed anytime by replacement of the operators and change of the 

fab policies. 
 The use of the proposed RL algorithm is limited but useful for the real fab operations. Since the method 
provides a good schedule for a given or similar demand set, if learning is conducted every time demand 
changes, good schedules can be provided repeatedly. And also the method of constructing state features 
does not depend on the system size so that, we can apply the method to the larger systems like semi-
conductor fabs if the computation power is sufficient. 
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